
Evolution of bed material waves 107

Copyright © 2005 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 30, 107–114 (2005)

Earth Surface Processes and Landforms
Earth Surf. Process. Landforms 30, 107–114 (2005)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/esp.1156

Short Communication

More on the evolution of bed material waves in
alluvial rivers
Yantao Cui,1* Gary Parker,2 Thomas E. Lisle,3 James E. Pizzuto4 and Annjanette M. Dodd5

1 Stillwater Sciences, 2855 Telegraph Avenue, Suite 400, Berkeley, CA 94705, USA
2 St Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
3 Pacific Southwest Research Station, USDA Forest Service, Arcata, CA 95521, USA
4 Department of Geology, University of Delaware, Newark, DE 19716, USA
5 Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA

Abstract
Sediment waves or pulses can form in rivers following variations in input from landslides,
debris flows, and other sources. The question as to how rivers cope with such sediment
inputs is of considerable practical interest. Experimental, numerical and field evidence
assembled by the authors suggests that in mountain gravel-bed streams, such pulses show
relatively little translation, instead mostly dispersing in place. This research has recently
been the subject of discussion. In particular it has been suggested that (a) the equations of
flow and sediment mass balance used in the analyses, and in most other morphodynamic
analyses, require correction; (b) the dominance of dispersion appears only because the
hyperbolic nature of the governing equations has not been adequately considered; and (c)
the sediment transport equation used in the analyses does not lead to generalizable results.
Here we suggest that (a) the relations for mass balance do not require the indicated correc-
tion; (b) the hyperbolic nature of the governing equations does not preclude the result of
dispersion dominating translation in mountain streams; and (c) the general behaviour of an
appropriate hyperbolic model of sediment waves (pulses) includes the relative roles of dis-
persion and translation, and is not affected by the precise choice of a sediment transport
relation (as long as the choice is reasonable for the case in question). Copyright © 2005 John
Wiley & Sons, Ltd.
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Introduction

Cao and Carling (2003) have provided a critique of the analysis of Lisle et al. (2001) on bed material waves (sediment
waves, sediment pulses) in alluvial rivers. (In the present contribution the terms ‘sediment wave’ and ‘sediment pulse’
are used interchangeably.) This recent short communication (Cao and Carling, 2003) served three primary purposes:
(a) to offer additional terms in the governing equations of river morphodynamics; (b) to demonstrate that the govern-
ing equations are universally hyperbolic; and (c) to point out limitations of the recent work of Lisle et al. (2001). Here
we suggest that one of Cao and Carling’s governing equations may not be correct, and the additional terms are likely
to be negligible in most applications of interest, whether field or experimental. In addition, we suggest alternatives to
several assertions in their short communication.

The ‘Dispersion’ Theory of Lisle et al.

Cao and Carling (2003) have labelled the theoretical development in Lisle et al. (2001) as a ‘dispersion theory’ of
sediment-wave evolution. The formulation and solution given in Lisle et al. (2001), however, contain terms for
translation as well as dispersion. Rather than ignoring translation, Lisle et al. (2001) conclude that conditions of
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bed-material transport that are common in gravel-bed channels lead to a diminishingly small value of the translation
term relative to the dispersion term. Translation can, however, be significant in other circumstances. To illustrate this,
Lisle et al. (2001) provide a field example of significant translation of sandy sediment waves in a gravel-bed channel
with low Froude number, an observation that is consistent with their theory.

Lisle et al. (2001) provide a brief discussion of the numerical model of Cui et al. (2003a,b). Figure 13 of Cui et al.
(2003b) provides an example of an adaptation of the numerical model for sediment waves (pulses) to the case of a
low-slope, sand-bed stream. The same model that predicts minimal translation for gravel-bed mountain streams (using
a sediment transport relation appropriate for that case) predicts substantial translation for low-slope sand-bed streams
(using a sediment transport relation appropriate for that case). The difference in behaviour is not due to the use of a
different sediment transport relation, however, but rather is due to the much lower Froude numbers prevailing in the
latter case.

Correction to Equation 1 of Cao and Carling

The formulations of Cao and Carling (2003) for the conservation of total flow and sediment mass (equations 1 and 3
in their paper, which also appear in Cao et al. (2002) as equations 1 and 3, corresponding to Equations 1 and 2 below)
contain additional terms that have not been included in the work of most previous authors.
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where t = time; x = streamwise distance; h = flow depth; U = cross-sectionally averaged streamwise velocity; Y = bed
elevation; p = bed sediment porosity; qs = volume sediment discharge per unit width (qs = ChU, and C = average
volume sediment concentration).

The last term on the left-hand side of Equation 1 and the second term on the left-hand side of Equation 2 are the
terms added by Cao and Carling (2003); they argue for the significance of these terms in morphodynamic modelling.
In this section we suggest that Equation 1 may not be correct, and then provide our proposal for a replacement. We
further illustrate in the next section that the additional terms in the corrected equations are likely to be negligible in
most rivers.

To elaborate on Equation 1, the conservation equation for the combined mass of water and sediment is first
considered. This conservation equation takes the form
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in which qw = Uh denotes the water discharge per unit width. Equation 3 can be rewritten as
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Comparing Equations 1 and 4, it is found that the only condition under which Equation 1 is correct is the case of
vanishing ∂qs/∂x, a condition that is not satisfied in general. We suggest that the correct replacement for Equation 1 is
obtained by substituting Equation 2 into Equation 4 so as to eliminate the term ∂qs/∂x, resulting in Equation 5:
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Why the Extra Terms in Cao and Carling can be Strictly Neglected for
Most Cases of Interest

The corrected version of flow and sediment mass conservation is Equation 5; Cao and Carling’s (2003) equation for
sediment conservation (Equation 2) remains unaltered. Equation 2 contains the term ∂(qs/U)/∂t, and Equation 5
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contains the terms −∂(qs/U)/∂t and p∂Y/∂t that have not been included in most previous morphodynamic analyses.
There is a specific reason why they have not been included, as demonstrated below.

Equations 5 and 2 are first placed in dimensionless form using parameters characterizing a reference equilibrium
state (and denoted with overbars):
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where the variables with the tilde are the dimensionless variables; h denotes equilibrium water depth; U denotes cross-
sectionally averaged velocity at the equilibrium condition; qw = Uh denotes the equilibrium water discharge per unit
width; and qs denotes the equilibrium volume sediment transport rate per unit width. Substituting Equations 6a–g into
Equations 5 and 2, the following respective forms are found:
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and C denotes the equilibrium value of C.
Most rivers transport far less sediment than water, so that the condition ε << 1 prevails even during floods (e.g.

Parker, 1976). A clear illustration of this is provided by Mulder and Syvitski (1995). When rivers meet the sea, they
normally form surface plumes because even sediment-laden river water is usually much lighter than sea water. In
order for a river to plunge and form a bottom turbidity current when it meets the sea, the density of the river water
must exceed that of sea water, i.e. near 1·026 tons/m3. Assuming a specific gravity of sediment of 2·65, in order to
plunge the concentration C of sediment in a river must thus exceed the rather small value of 0·0158. Mulder and
Syvitski (1995) document that while such streams do exist (e.g. the Yellow River, China), they are rare. The great
majority of streams have much lower values of C, even during floods.

The non-dimensionalization of time of Equation 6e gives the ratio of time t divided by a characteristic hydraulic
time scale h/U. Over time scales characteristic of hydraulic response, then, t ~ h/U and thus † ~ 1. Thus under the
condition ε << 1 Equation 7b approximates to the form

  

∂
∂
Y

†
  = 0 (9)

Equation 7a likewise approximates with the aid of Equation 9 to the form
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That is, over hydraulic time scales bed elevation can be taken to be unchanging in time, and flow mass balance takes
the form corresponding to a fixed-bed channel.

A morphodynamic time scale t* associated with the erosion and deposition of sediment can be defined as

t* = ε† (11)

That is, as t* changes by an order-one amount, † must change by order 1/ε, i.e. a very large amount compared to the
characteristic dimensionless hydraulic time scale of unity. Substituting Equation 11 into Equation 7b, which governs
morphodynamic change, the following equation is obtained:
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Dropping the second order term in ε, the equation approximates to the following form
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Transforming Equations 10 and 13 back to the original dimensioned variables, it is found that the appropriate forms
for Equations 5 and 2 for a morphodynamic analysis are
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That is, the extra terms in Cao and Carling (2003) are negligible in most rivers.
The extra terms in Equations 5 and 2 are not universally negligible. Some rivers, such as the Yellow River, China,

can transport sediment in such high concentrations that the basis for the quasi-steady approximation breaks down (i.e.
the assumption that ε << 1 is not valid any more). This is also the case for lahars, or heavily sediment-laden river
flows resulting from volcanic eruptions. Any treatment of debris flows, as well as the highly sediment-laden flow that
sometimes occurs immediately downstream of a debris flow after it deposits, can be expected to require the extra
terms. Cao and Carling (2003) have done the research community a service by pointing this out.

The Hyperbolic Nature of the Governing Equations

Most of the communication in Cao and Carling (2003) is devoted to a demonstration that the governing equations are
universally hyperbolic. The authors suggest that the hyperbolic nature of the governing equations has been studied
thoroughly and is well known (e.g. de Vries, 1965; Gill, 1988; Lai, 1991; Sloff, 1993; Cui et al., 1995; Cui and Parker,
1997b). In particular, Cui and Parker (1997b) demonstrate that the evolution of sediment waves can be dominated by
dispersion despite the hyperbolic nature of the governing equations.

Types of Sediment Waves and Sediment Bores

Cao and Carling (2003) suggest that there are two types of sediment wave: one that can become progressively flatter
with diminishing amplitude and one that can evolve into a shock wave with a sharp front (shock or discontinuity).
Ribberink and van der Sande (1985) and Gill (1988), for example, discuss the propagation of a leading-edge dis-
continuity associated with an impulsive increase in sediment feed. Sharp discontinuities also take the form of the
delta front (sediment bore) as a river progrades into standing water (e.g. Needham and Hey, 1991).

Sediment waves with discontinuities have not been discussed in the sediment wave (sediment pulse) work of the
group of researchers who have authored this short communication (e.g. Lisle et al., 1997, 2001; Cui et al., 2003a,b;
Cui and Parker, in press). The phenomenon, however, can be simulated with our family of models by setting the
appropriate upstream and/or downstream boundary conditions (e.g. Cui et al., in press a). Simulated sediment waves
with sharp fronts can be found in Cui et al. (1996), Cui and Parker (1997a), Cui and Parker (1999), and Cui et al. (in
press a). In particular, Cui et al. (1996) applied the traditional shock-capturing method, and Cui and Parker (1997a)
applied a shock-fitting method and successfully simulated the progress of the discontinuous sediment front in addition
to the downstream fining associated with bed aggradation; Cui et al. (in press a) simulated one of the runs previously
simulated by Cui et al. (1996) and Cui and Parker (1997a) with the sediment wave model of Cui et al. (2003b); and
Cui and Parker (1999) were able to apply the same algorithm to simulate the progress of the front of the sediment
deposit resulting from the disposal of mine waste sediment into the Ok Tedi–Fly River system in Papua New Guinea.
Examples of the simulations of Cui et al. (1996), Cui and Parker (1997a), and Cui and Parker (1999) are shown in
Figures 1 and 2. Details of the simulations are not presented here; readers are referred to the original references. The
common features of the formation of sharp front in Figures 1 and 2 are a very low Froude number downstream of the
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Figure 1. Run 2 of the St. Anthony Falls Laboratory downstream fining experiment (Paola et al., 1992), simulated by Cui et al.
(1996), Cui and Parker (1997a) and Cui et al. (in press a). The diagram is from Cui et al. (in press a), and the results labelled
‘simplified treatment’ are simulated with the model of Cui et al. (2003b). Flow is from left to right.

front, and a sediment load far exceeding the equilibrium sediment transport capacity that continues either throughout
the run (experiments) or was sustained for many years (field).

It is useful to point out that the evolution of the sediment front in Cui et al. (1996) and Cui and Parker (1997a) is
very similar to that observed in the experiment performed by Needham and Hey (1991). Needham and Hey (1991)
suggest that a sediment front such as those shown in Figures 1 and 2 advances with constant speed. In addition, they
imply that the conservation equations for flow, momentum and sediment cannot admit solutions where there are
discontinuities such as sediment fronts (sediment bores). We suggest that neither statement is accurate. Standard

Figure 2. Simulated sediment deposition in the middle Fly River, Papua New Guinea, for mine operation continued until year
2010 without sediment remediation (Cui and Parker, 1999). Flow is from right to left.
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techniques such as shock fitting and shock capturing provide excellent means for describing discontinuities in hyper-
bolic systems. Cui et al. (1996) have used shock capturing, and Cui and Parker (1997a) have used shock fitting to
describe the migration of deltaic fronts. The migration speed of the front is predicted as a product of the analysis. For
example, consider an equilibrium condition under constant inflow rates of water and sediment. A sediment front can
be created by significantly increasing the sediment feed rate while maintaining the same water discharge. As long as
the water discharge and the increased sediment feed rate remain constants, the migration speed of the front must
gradually decline in time, due to the steadily increasing rate of extraction of sediment consumed in aggrading the bed
upstream of the front. In the case of relatively short experiments, the migration rate may appear to be constant, but
only as a local approximation.

The application of a shock-capturing method seeks a ‘weak solution’ and requires the introduction of artificial
viscous terms in the governing equations. In general, this technique produces acceptable results when the shock is
pronounced, such as in the case of Cui et al. (1996) shown in Figure 1. When the shock, or discontinuity, becomes
small, however, the artificial viscosity often leads to artificial waves on the channel bed that are of the same order of
magnitude as the true disturbance itself, so giving unacceptable results. Because of this shortcoming, the shock-
capturing method has not been used in the sediment wave (pulse) modelling by the authors. Instead a simplified
method was adopted, i.e. flow parameters were calculated with the standard backwater formulation for low Froude
number, and the quasi-normal assumption was used for high Froude number. This simplified technique produces
results that agree well with more complicated methods such as those used in Cui et al. (1996) and Cui and Parker
(1997a), as demonstrated in Cui et al. (in press a), and shown here as Figure 1.

The propagation of a sediment front is always associated with an increase in slope compared to that prevailing
before the passage of the front, as correctly pointed out in Needham and Hey (1991). This feature appears to be
missing from figure 1b of Cao and Carling (2003).

The Sediment Transport Relation of Meyer-Peter and Muller

Cao and Carling (2003) state that the recent dispersion/diffusion models (Lisle et al., 1997, 2001) entirely hinge upon
particular sediment transport function(s), and thus can only be applicable to limited situations. They do not, however,
provide any comparative results to validate their statement that particular bed load equations lead to contrasting
predictions of relative rates of dispersion and translation under the same conditions.

It is a fact that Lisle et al. (1997) used the relation of Meyer-Peter and Muller (1948) as part of their model. There
is, however, nothing peculiar about this relation, and substituting it with any other reasonable sediment transport
relation will not compromise the basic characteristics of a numerical model of sediment waves (pulses). For example,
in subsequent work (Sutherland et al., 2002; Cui et al., 2003b; Cui and Parker, in press; also summarized in Lisle
et al., 2001) the surface-based bedload equation for gravel mixtures due to Parker (1990) was used. The numerical
model successfully reproduced the evolution of a sediment wave (pulse) due to a landslide in the Navarro River,
California, without any adjustment in parameters. In addition, Cui and Parker (1999, in press) and Cui et al. (2003b)
used Brownlie’s bed material equation (Brownlie, 1982) in a model of sediment waves (pulses) and obtained reason-
able results. These same simulations indicate that as opposed to mountain streams, sediment pulses in low-slope
sand-bed streams can show significant translation as well as dispersion.

The State of the Art in Sediment Wave Modelling

Cao and Carling (2003) state that the ‘quality of mathematical river modelling remains uncertain primarily because
there are no universal sediment functions or hydraulic resistance relations for the underlying physics of interaction
between water flow and sediment transport’. Although we agree with Cao and Carling (2003) that there remain
uncertainties in numerical modelling, we are optimistic that sediment transport modelling can be a useful tool for
understanding the general behaviour of channel morphology and for solving practical problems, provided that the
models are applied at the appropriate scale and interpreted with caution. For example, our family of numerical models
on sediment waves or pulses (e.g. Lisle et al., 1997; Cui et al., 2003b; Cui and Parker, in press) has helped us to
understand the relative importance of different parameters (e.g. Froude number, initial wave length, initial wave
amplitude, grain size distribution, particle abrasion) in the general behaviour of sediment waves; and application of the
Cui and Parker (in press) model to dam-removal projects and the disposal of waste sediment from mines has helped
stakeholders evaluate management alternatives (Cui and Wilcox, in press; Cui et al., in press a,b; Cui and Parker,
1999).
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Conclusion

We suggest that the additional terms in the modified governing equations in Cao and Carling (2003) either require
amendment or are usually unnecessary for most morphodynamic modelling, including that of the evolution of sedi-
ment waves (pulses). The hyperbolic nature of the governing equations is well understood and does not contradict the
dominance of dispersion in gravel-bed rivers. Sediment waves with an advancing front have been studied extensively
prior to the sediment wave work of Lisle et al. (2001) by various researchers (e.g. Cui et al., 1996; Cui and Parker,
1997a, 1999). The sediment transport relation of Meyer-Peter and Muller (1948) used in Lisle et al. (1997) can be
replaced with a different sediment transport equation without compromising the general characteristics of a model
of sediment waves (pulses). The family of sediment wave (pulse) models of the group who authored this short
communication (Lisle et al., 1997; Cui et al., 2003b, Cui and Parker, in press) has provided insight into the relative
importance of parameters and the general behaviour of sediment waves. The models have also been adapted and used
successfully to solve engineering problems such as dam removal and the disposal of mine-derived sediment (Cui and
Wilcox, in press; Cui et al., in press a,b, Cui and Parker, 1999).

Cao and Carling (2003) may have misunderstood certain aspects of Lisle et al. (2001) because several related
publications would not have been available to them. The complete corpus of publications is introduced here. All
papers that are under review or in press but not yet published can be downloaded at http://www.stillwatersci.com/
sedimenttransportpubs.htm.
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